Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus.

Identifieur interne : 002B48 ( Main/Exploration ); précédent : 002B47; suivant : 002B49

Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus.

Auteurs : Eli Rodgers-Melnick [États-Unis] ; Shrinivasrao P. Mane ; Palitha Dharmawardhana ; Gancho T. Slavov ; Oswald R. Crasta ; Steven H. Strauss ; Amy M. Brunner ; Stephen P. Difazio

Source :

RBID : pubmed:21974993

Descripteurs français

English descriptors

Abstract

Comparative analysis of multiple angiosperm genomes has implicated gene duplication in the expansion and diversification of many gene families. However, empirical data and theory suggest that whole-genome and small-scale duplication events differ with respect to the types of genes preserved as duplicate pairs. We compared gene duplicates resulting from a recent whole genome duplication to a set of tandemly duplicated genes in the model forest tree Populus trichocarpa. We used a combination of microarray expression analyses of a diverse set of tissues and functional annotation to assess factors related to the preservation of duplicate genes of both types. Whole genome duplicates are 700 bp longer and are expressed in 20% more tissues than tandem duplicates. Furthermore, certain functional categories are over-represented in each class of duplicates. In particular, disease resistance genes and receptor-like kinases commonly occur in tandem but are significantly under-retained following whole genome duplication, while whole genome duplicate pairs are enriched for members of signal transduction cascades and transcription factors. The shape of the distribution of expression divergence for duplicated pairs suggests that nearly half of the whole genome duplicates have diverged in expression by a random degeneration process. The remaining pairs have more conserved gene expression than expected by chance, consistent with a role for selection under the constraints of gene balance. We hypothesize that duplicate gene preservation in Populus is driven by a combination of subfunctionalization of duplicate pairs and purifying selection favoring retention of genes encoding proteins with large numbers of interactions.

DOI: 10.1101/gr.125146.111
PubMed: 21974993
PubMed Central: PMC3246211


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus.</title>
<author>
<name sortKey="Rodgers Melnick, Eli" sort="Rodgers Melnick, Eli" uniqKey="Rodgers Melnick E" first="Eli" last="Rodgers-Melnick">Eli Rodgers-Melnick</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, West Virginia 26506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, West Virginia 26506</wicri:regionArea>
<wicri:noRegion>West Virginia 26506</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mane, Shrinivasrao P" sort="Mane, Shrinivasrao P" uniqKey="Mane S" first="Shrinivasrao P" last="Mane">Shrinivasrao P. Mane</name>
</author>
<author>
<name sortKey="Dharmawardhana, Palitha" sort="Dharmawardhana, Palitha" uniqKey="Dharmawardhana P" first="Palitha" last="Dharmawardhana">Palitha Dharmawardhana</name>
</author>
<author>
<name sortKey="Slavov, Gancho T" sort="Slavov, Gancho T" uniqKey="Slavov G" first="Gancho T" last="Slavov">Gancho T. Slavov</name>
</author>
<author>
<name sortKey="Crasta, Oswald R" sort="Crasta, Oswald R" uniqKey="Crasta O" first="Oswald R" last="Crasta">Oswald R. Crasta</name>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</author>
<author>
<name sortKey="Brunner, Amy M" sort="Brunner, Amy M" uniqKey="Brunner A" first="Amy M" last="Brunner">Amy M. Brunner</name>
</author>
<author>
<name sortKey="Difazio, Stephen P" sort="Difazio, Stephen P" uniqKey="Difazio S" first="Stephen P" last="Difazio">Stephen P. Difazio</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:21974993</idno>
<idno type="pmid">21974993</idno>
<idno type="doi">10.1101/gr.125146.111</idno>
<idno type="pmc">PMC3246211</idno>
<idno type="wicri:Area/Main/Corpus">002C66</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C66</idno>
<idno type="wicri:Area/Main/Curation">002C66</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002C66</idno>
<idno type="wicri:Area/Main/Exploration">002C66</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus.</title>
<author>
<name sortKey="Rodgers Melnick, Eli" sort="Rodgers Melnick, Eli" uniqKey="Rodgers Melnick E" first="Eli" last="Rodgers-Melnick">Eli Rodgers-Melnick</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, West Virginia 26506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, West Virginia 26506</wicri:regionArea>
<wicri:noRegion>West Virginia 26506</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mane, Shrinivasrao P" sort="Mane, Shrinivasrao P" uniqKey="Mane S" first="Shrinivasrao P" last="Mane">Shrinivasrao P. Mane</name>
</author>
<author>
<name sortKey="Dharmawardhana, Palitha" sort="Dharmawardhana, Palitha" uniqKey="Dharmawardhana P" first="Palitha" last="Dharmawardhana">Palitha Dharmawardhana</name>
</author>
<author>
<name sortKey="Slavov, Gancho T" sort="Slavov, Gancho T" uniqKey="Slavov G" first="Gancho T" last="Slavov">Gancho T. Slavov</name>
</author>
<author>
<name sortKey="Crasta, Oswald R" sort="Crasta, Oswald R" uniqKey="Crasta O" first="Oswald R" last="Crasta">Oswald R. Crasta</name>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</author>
<author>
<name sortKey="Brunner, Amy M" sort="Brunner, Amy M" uniqKey="Brunner A" first="Amy M" last="Brunner">Amy M. Brunner</name>
</author>
<author>
<name sortKey="Difazio, Stephen P" sort="Difazio, Stephen P" uniqKey="Difazio S" first="Stephen P" last="Difazio">Stephen P. Difazio</name>
</author>
</analytic>
<series>
<title level="j">Genome research</title>
<idno type="eISSN">1549-5469</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Duplication (physiology)</term>
<term>Gene Expression Regulation, Plant (physiology)</term>
<term>Genome, Plant (physiology)</term>
<term>Models, Genetic (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (physiology)</term>
<term>Signal Transduction (physiology)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Duplication de gène (physiologie)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Génome végétal (physiologie)</term>
<term>Maladies des plantes (génétique)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (physiologie)</term>
<term>Transduction du signal (physiologie)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Maladies des plantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Duplication de gène</term>
<term>Génome végétal</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Duplication</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genome, Plant</term>
<term>Populus</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Models, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Modèles génétiques</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Comparative analysis of multiple angiosperm genomes has implicated gene duplication in the expansion and diversification of many gene families. However, empirical data and theory suggest that whole-genome and small-scale duplication events differ with respect to the types of genes preserved as duplicate pairs. We compared gene duplicates resulting from a recent whole genome duplication to a set of tandemly duplicated genes in the model forest tree Populus trichocarpa. We used a combination of microarray expression analyses of a diverse set of tissues and functional annotation to assess factors related to the preservation of duplicate genes of both types. Whole genome duplicates are 700 bp longer and are expressed in 20% more tissues than tandem duplicates. Furthermore, certain functional categories are over-represented in each class of duplicates. In particular, disease resistance genes and receptor-like kinases commonly occur in tandem but are significantly under-retained following whole genome duplication, while whole genome duplicate pairs are enriched for members of signal transduction cascades and transcription factors. The shape of the distribution of expression divergence for duplicated pairs suggests that nearly half of the whole genome duplicates have diverged in expression by a random degeneration process. The remaining pairs have more conserved gene expression than expected by chance, consistent with a role for selection under the constraints of gene balance. We hypothesize that duplicate gene preservation in Populus is driven by a combination of subfunctionalization of duplicate pairs and purifying selection favoring retention of genes encoding proteins with large numbers of interactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21974993</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>04</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1549-5469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Genome research</Title>
<ISOAbbreviation>Genome Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>95-105</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1101/gr.125146.111</ELocationID>
<Abstract>
<AbstractText>Comparative analysis of multiple angiosperm genomes has implicated gene duplication in the expansion and diversification of many gene families. However, empirical data and theory suggest that whole-genome and small-scale duplication events differ with respect to the types of genes preserved as duplicate pairs. We compared gene duplicates resulting from a recent whole genome duplication to a set of tandemly duplicated genes in the model forest tree Populus trichocarpa. We used a combination of microarray expression analyses of a diverse set of tissues and functional annotation to assess factors related to the preservation of duplicate genes of both types. Whole genome duplicates are 700 bp longer and are expressed in 20% more tissues than tandem duplicates. Furthermore, certain functional categories are over-represented in each class of duplicates. In particular, disease resistance genes and receptor-like kinases commonly occur in tandem but are significantly under-retained following whole genome duplication, while whole genome duplicate pairs are enriched for members of signal transduction cascades and transcription factors. The shape of the distribution of expression divergence for duplicated pairs suggests that nearly half of the whole genome duplicates have diverged in expression by a random degeneration process. The remaining pairs have more conserved gene expression than expected by chance, consistent with a role for selection under the constraints of gene balance. We hypothesize that duplicate gene preservation in Populus is driven by a combination of subfunctionalization of duplicate pairs and purifying selection favoring retention of genes encoding proteins with large numbers of interactions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rodgers-Melnick</LastName>
<ForeName>Eli</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, West Virginia University, Morgantown, West Virginia 26506, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mane</LastName>
<ForeName>Shrinivasrao P</ForeName>
<Initials>SP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dharmawardhana</LastName>
<ForeName>Palitha</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Slavov</LastName>
<ForeName>Gancho T</ForeName>
<Initials>GT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Crasta</LastName>
<ForeName>Oswald R</ForeName>
<Initials>OR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Strauss</LastName>
<ForeName>Steven H</ForeName>
<Initials>SH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brunner</LastName>
<ForeName>Amy M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Difazio</LastName>
<ForeName>Stephen P</ForeName>
<Initials>SP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>10</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genome Res</MedlineTA>
<NlmUniqueID>9518021</NlmUniqueID>
<ISSNLinking>1088-9051</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="Y">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21974993</ArticleId>
<ArticleId IdType="pii">gr.125146.111</ArticleId>
<ArticleId IdType="doi">10.1101/gr.125146.111</ArticleId>
<ArticleId IdType="pmc">PMC3246211</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1999 Apr;151(4):1531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10101175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 May;161(1):259-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12019239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10302-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10468603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):395-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007;7:213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17988397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 Apr;21(4):219-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15797617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Dec 1;22(23):2955-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17038341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2007 Dec;17(6):505-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2009;17(5):699-717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19802709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Dec;18(12):1944-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Funct Genomics. 2007;:58721</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17538690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Sep;12(9):1305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12213767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(10):R209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17916239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2006 Sep;7(5):437-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Jun;158(2):927-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11430355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):12-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 5;473(7345):97-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20199690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Apr 24;452(7190):991-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18432245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 May;21(5):507-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18393610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 20;326(5956):1112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2004 Mar;20(3):116-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15049302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 Oct;21(10):548-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16098632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2010 Jun;70(6):531-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20495794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 1;423(6935):74-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12721627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Mar;64(5):542-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17192808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:349-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20441528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:433-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(1):54-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19925558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Dec;159(4):1789-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11779815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Apr;8(2):129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):408-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18694447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Oct;14(10A):1870-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3403-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 9;444(7116):171-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2730-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16467140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(5):873-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17470057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):935-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jan 14;463(7278):178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20075913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2010;10:125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20433764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jan;154(1):459-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10629003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Apr;66(6):619-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18247136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genesis. 2010 Apr;48(4):254-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20143347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2004 Oct;20(10):461-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15363896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Jan;38(1):124-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16369532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1220-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15105442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Apr;25(4):403-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15687089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 May 4;107(18):8492-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20404162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 25;320(5875):486-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2007;5:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17651506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Apr;15(4):809-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 Mar;2(3):E55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jun;46(5):794-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 May;6(5):e1000949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20485521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jul;16(7):805-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16818725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2001 Dec;11(6):725-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2006 Mar;28(3):240-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16479580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Oct;38(19):6513-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Brunner, Amy M" sort="Brunner, Amy M" uniqKey="Brunner A" first="Amy M" last="Brunner">Amy M. Brunner</name>
<name sortKey="Crasta, Oswald R" sort="Crasta, Oswald R" uniqKey="Crasta O" first="Oswald R" last="Crasta">Oswald R. Crasta</name>
<name sortKey="Dharmawardhana, Palitha" sort="Dharmawardhana, Palitha" uniqKey="Dharmawardhana P" first="Palitha" last="Dharmawardhana">Palitha Dharmawardhana</name>
<name sortKey="Difazio, Stephen P" sort="Difazio, Stephen P" uniqKey="Difazio S" first="Stephen P" last="Difazio">Stephen P. Difazio</name>
<name sortKey="Mane, Shrinivasrao P" sort="Mane, Shrinivasrao P" uniqKey="Mane S" first="Shrinivasrao P" last="Mane">Shrinivasrao P. Mane</name>
<name sortKey="Slavov, Gancho T" sort="Slavov, Gancho T" uniqKey="Slavov G" first="Gancho T" last="Slavov">Gancho T. Slavov</name>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Rodgers Melnick, Eli" sort="Rodgers Melnick, Eli" uniqKey="Rodgers Melnick E" first="Eli" last="Rodgers-Melnick">Eli Rodgers-Melnick</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002B48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21974993
   |texte=   Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21974993" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020